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When several phases coexist, the interface between two phases can be wetted by 
several films of the other phases. This is called multilayer wetting and can be 
characterized by the behavior of the spreading coefficients, which relate the 
surface tensions between the different phases. In this paper we consider a class 
of models which can exhibit a sequence of phase transitions, With some 
new correlation inequalities, we prove the positivity of a family of spreading 
coefficients. These inequalities, together with a thermodynamic argument, lead 
to the conclusion of multilayer wetting. These results generalize earlier results 
where single-layer interfacial wetting was obtained for the Ports model. 

KEY WORDS: Wetting; multilayer wetting; Potts model; correlation 
inequalities. 

1. I N T R O D U C T I O N  

When  several phases a~, aa,..., an coexist, an  interface between two of them, 
say a ,  ai+2, may be wetted by a layer of a third one, say ai+~. The condi-  
t ion of perfect wetting of ai, a~+2 by a film of a~+l can be expressed in 
terms of the spreading coefficient: 

s(ai,  ai+ l,  ai+2) = ff(ai, a,+ 2) -- a(a, ,  ai+ 1) - ~r(ai+ l, ai+ 2) 

where a ( . , - )  denotes the surface tension between two phases. The interface 

between the phases ai, ai+2 should be wetted by the phase a,+~ when the 
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Antonov rule is satisfied: s(ai, ai+l ,  ai+2)= 0. If all the phases coexist and 
all the spreading coefficients s(a, aj, ak)= 0 when i < j <  k, then the inter- 
face between the phases al and a,  will be wetted by n - 2  films of the 
phases a2,.,. , a ,_  1. This is multilayer wetting. It may be of course that the 
spreading coefficients define only a partial order between the phases; in 
such a case, which we shall indeed consider, the number of wetting layers 
will be smaller. 

Among the models which display wetting, of particular interest is the 
q-state Ports model, whose Hamiltonian is given by 

H = -  S (1) 
( i , j >  

where aj ~ { 1 ..... q }, q ~> 2, J >/0, 6 is the usual Kronecker symbol, and the 
bracket restricts the sum over nearest neighbor pairs. This model exhibits 
for d>~2 and q not too small a temperature-driven first-order phase 
transition at some inverse temperature fit, where q ordered phases a, b .... 
coexist with a disordered phase D; the surface tensions between the 
coexisting phases are strictly positive; "for rigorous results, see refs. 2-6. In 
ref. 1 some new correlation inequalities were proven and used to prove that 
the spreading coefficient s(a, D, b) is nonnegative. This result together with 
a thermodynamic argument led to the conclusion that at fi, the interface 
between two ordered phases must be wetted by a film of the disordered 
phase. Actually the correlation inequalities in ref. 1 were proven when q is 
an even number, and extended to all values of q in ref. 7. A proof that 
s(a, D, b) <~ 0 for the Potts model with q large at the transition temperature 
is given in ref. 8, thus proving the Antonov rule s(a, D, b) = O. 

The Antonov rule is compatible only with complete wetting and not 
with partial wetting; however, in order to describe more precisely this 
phenomenon, it would be interesting to prove that, indeed, for typical 
configurations, a macroscopic film of the disordered phase separates the 
two ordered phases. The thickness of the film is expected to diverge in the 
thermodynamic limit as L 1/2 in dimension two and as log L in dimension 
three. 

In the present paper we give a simpler and more general proof of 
the correlation inequalities which yield the nonnegativity of spreading 
coefficients. This proof follows the method of Ginibre (9) as extended to 
multicomponent rotators. (1~ It enables us to study multilayer wetting by 
extending the above analysis to the following class of Hamiltonians: 

( i , j )  r 1 ~ = 1 
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where 

x~{1 , . . . ,q~}  with f i  q~=q  

so that 

~r= x~ + ( x Z - 1 ) q l  + (X~-  l )qlq2 + ... + ( x ' ~ -  l )q~ . . .q~  (3) 

takes the values 1,..., q. 
For m = 2, this model exhibits three kinds of pure thermodynamic 

phases: q ordered phases in which configurations {x]} and {x~} are both 
ordered; ql partially ordered phases in which only configurations {x] } are 
ordered while {x~} are disordered; and a disordered phase in which both 
configurations are disordered. We expect the phase diagram described in 
Fig. 2: according to the value of J2/J1, either there is a unique inverse 
transition temperature /~, where the q ordered phases coexist with the 
disordered one, or there are two transition temperatures/~ and/3~ where 
the partially ordered phases coexist with the ordered ones (/~]) or with the 
disordered one (/3~), or for a particular value of Jz/J~ there is a unique 
temperature where all the previous phases coexist. 

The correlation inequalities mentioned above imply the positivity of 
spreading coefficients. For example, in the case m = 2, consider two ordered 
phases a = (a~, a2 )  , b = (bs, b2), two partially ordered phases as = (as, dis- 
ordered), bl = (bs, disordered), and the totally disordered phase D. We 
shall prove the following inequalities: 

~(a, b) ~> a(a, D) + (x(D, b) 

~(a, b) ~> a(a, al) + a(aa, bl) + ~(bl, b) 

~(a, b) ~> a(a, al) + ~r(al, D) + a(D, bs) + a(bl,  b) 

(4) 

(5) 

(6) 

These results, together with a thermodynamic argument (see ref. 1), 
lead to wetting by one, two, or three interfacial layers depending on the 
number of phases in coexistence. For m > 2, we obtain similarly up to 
2 m -  1 interfacial wetting layers. 

2. C O R R E L A T I O N  INEQUALIT IES  

We first give a simple and general proof of the relevant correlation 
inequalities for the standard Ports model (m = 1). Let A be a finite set of 
sites. To each i ~ A we attach a spin variable ai which may assume q values 
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{1, 2,..., q} with q~>2. The energy of a configuration aAS {1,..., q}iAI is 
given by 

H(~A)= -- ~ Jo6(ai, aj)-- ~ hi(~ri) (7) 
{i;j} c A  i c A  

We assume that Jij~>0 for all {i , j}  c A .  The functions hi(.)  will be 
used for boundary conditions which will break the symmetry and create an 
interface. Correlation inequalities involve the fact that the interaction 
Jo~5(ai, aj) is positive definite o n  (V/q) A. This is not possible for hi(a) 
because we shall want to favor one of the q states on the top boundary and 
a different state on the bottom boundary. In order to retain some symmetry 
and positive definiteness, we choose an integer k with 1 ~<k ~< q - 1 ,  and 
require hi(-) to be positive definite when restricted to Zk and also when 
r e s t r i c t e d  to  ~ q _  k : 

1 k 2rcna 
]~;(n)=~ E hi(~176 forall  iEA  and n = l  ..... k (8) 

O'=1 

and 

q 2zcn(a - k) 
1 hi( )cos 

q - k  =k+ 1 q - k  

for all i E A and n = 1,..., q - k (9) 

Accordingly, for a given subset A ~ A, let C~ denote the set of real, 
positive-definite functions on the cyclic group (Zk) A (for k = 1, C{ denotes 
the set of nonnegative functions on A). Let o~ A be the set of real functions 
of aA which vanish unless a i ~< k for all i s  A and whose restriction to (2k) A 
belongs to C~. Similarly, let f4 A be the set of real functions of a A which 
vanish unless ai >~ k + 1 for all i e A and whose restriction to the remaining 

A subset with the structure of (2~q_k) A belongs to Cq_ k. We remark that con- 
ditions (8) and (9) express that he may be written as a sum hl 1) + hl 2) where 
hl 1) e ~i~ and hl 2) s f#(i~. Let us write 

A ~ A  A = A  

(that is, o ~ is the set of functions f which may be written as f = ~A = A )cA 
with fA ~ ~ and similarly for ~). 

Finally let ( . )  denote the expectation value with respect to the Gibbs 
measure 

#A = Z-1 e -  ~m~) (10) 
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T h e o r e m  1. Under the above hypotheses the following inequalities 
hold: 

( f g > < ~ ( f ) ( g )  if f e ~ , g e N  (11) 

<Af2>>.{A><f~> if L ,  f 2 e g  (12) 

{gig2)>>.~gl)fg2) if gl, g2e~f (13) 

ProoL To each ieA we attach the angle variables 0~, ~b~, ~p~ belong- 
ing, respectively, to 7/4, 7/k, 2q k, and we make the following change of 
variables: 

If a~ ~< k, we represent a~ by Oi = 0 or ~r, ~b~ = (2~/k)ai, and ~ arbitrary. 
If cri ~> k + 1, we represent or, by 0f = ~z/2 or 3~r/2, ~ = [2~/(q - k)]  x 

(G- k), and q~ arbitrary. 
The Gibbs measure is transformed into 

Z i exp f ~  Jo.[cos 2 0, cos: 0j c~(~b,- ~bj) + sin 2 0, sin 2 0j 6(0 ` - 0j)]  
v i ,  j 

+ ~/. 2 cos 2 0i n=i /~;(n) cos n~b,. + sin 2 0, ,=1 ~ /~;'(n) cos nOi 

+ ~ [ln(q - k) cos 2 0i + In k sin 2 0~] } 
i 

where the invariant measure o n  7/4 X •k X ~q-k is understood, and where 
6(q)) = 1 if (0 is a multiple of 27r and zero otherwise. Therefore # can be 
written as 

Z 1~ F(OA'~A)+G(OA'@A} 

where F e Y  and G eN. The proof  proceeds now as that  of Ginibre 
inequalities and its generalizations. (9-u) First we introduce the duplicate 
model with variables (0i, ~b~, Oi, 0;, ~b;, ~,;) and second we notice that any 
product  of terms of the form 

(cos G_+cos 0;), (sin O; + sin 0i) 

[co  [co  cos 

(where the m i are integers) gives a nonnegative contribution when we sum 
over all values of the variables with respect to the invariant measure. | 
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Remark 1. By choosing a=k, b=q, and f,  g of the form 
f =  1-L~A 6(a~, a), g = H ~ e  6(o% b), where A, B are subsets of A, we get 
the inequalities stated in ref. 1. 

Remark 2. The following monotonicity property holds: 

( f)Cq)<.(f)(q_l)  for all f ~ , . ~  (14) 

with respect to the number of states (Y  being defined with k = q -  1). In 
order to see this, we introduce the external field h~(a,)=ha(a, ,  q ) =  
h cos20i and notice that, from Theorem 1, the right-hand side in (14) 
increases with h ~> 0, and that for h = +oo the a~ will be restricted to the 
values { 1,..., q - 1 }. 

We next consider a generalized model. Let q = q~ ... qm be the product 
of rn integers q~ >/2 and let the energy be given by 

H(aA) = -- ~ ~ J,i(r) 6p~(~i, ~a)-- ~ h~(a,) (15) 
{ i ; j } c A  r = O  i ~ d  

where po=  1, p r = q l  " ' 'q r ,  and 6p(a, o-')= 1 if a = ~ '  modulo p and 0 
otherwise. From the correspondence 

6=X~ +(xZ--1)pl  + (X~-- l) p2 + ... +(xm--1)pm_l 

this Hamiltonian coincides with (2) when h = 0 and J~(r)= Jr if i, j are 
nearest neighbors and zero otherwise. We define 

D r = {a ' e  { 1,..., q}; 6'= or(mad p~)} 

q 
n = - -  = q 2  " "" q m  

Pl 

and choose some integer k such that 1 <<,k<~pl- 1. Now, we say that a 
real function on 0-A belongs to the set YA if it vanishes unless ~i~ L)~=I Dlo 
for all i~A and if its restriction to the set (U~=I DI~) A~- (2,~) A belongs to 

A Cnk. Similarly, we say that a real function on a~ belongs to the set fqA if 
pl  1 it vanishes unless o-i s U ~=k+~ D~ for all i s A and if its restriction to the set 

A A tU pI~=k+ID~o)~-~(~(p~-k)) belongs to C~(pl k). We also assume that 
Jo.(r) ~ 0 and all h~(.) e o ~  + fr 

T h e o r e m  2. Under these hypotheses, the correlation functions 
associated with the Hamiltonian (15) satisfy the inequalities stated in 
Theorem 1. 
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Proof As in the proof of Theorem 1, we change a i into 

(Oi, r I/li) C Z 4 X 7/nk X 2n(p,-Ic) 

We write a i = a i + r i p  1 with 1 <~ai<~Pl. Then: 
For  ai ~< k we take 0i = 0 or z~, Cs = (2zr/nk)(ai  + r ik) ,  and qs arbitrary. 
For  a ~ > ~ k + l  we take O i = n / 2  or 3~/2, r arbitrary, and 

@~ = [ 2 n / n ( p l  - k)]  [ a ~ -  k + rg(pl  - k ) ]. 
We have 

and we conclude as in the proof of Theorem 1. | 

3. INEQUALITIES BETWEEN SURFACE TENSIONS 

Next, we introduce residual free energies for the class of models 
defined by (15) which under appropriate conditions (coexistence of the 
corresponding pure phases) will have the physical meaning of surface 
tensions or interracial free energies. (12'13) For this purpose we consider 
translation-invariant and finite-range interaction potentials and take the set 
A as a rectangular box centered at the origin on a d-dimensional lattice Zd, 
and define, for r = 0 ,  1 ..... m, the following partition functions with 
boundary conditions: 

O" A ; O'~A �9 

where •A denotes the boundary of A (with a thickness equal to the range 
of the interaction) and 

H(rr A ] (r ~ )  = H((x A ~ ~A) -- H((T aA) 

In particular, the case r = m corresponds to totally ordered boundary 
conditions, and r = 0  corresponds to free boundary conditions. We also 
introduce mixed boundary conditions (D~,, D~') with respect to a plane 
containing the origin, orthogonal to a d-dimensional vector n, and the 
corresponding partition functions 

ZA(D~ID~b') = ~ exp[--flH(aAIagA)] ]-] (~]6pr(~i,a) 
( 7 A ; ~ A  i E 3 A  + \ q /  

i ~  a A -  
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where ~?A + is the part of ~A located above the plane and 0A-  = 3A\c3A + 
We define the surface tension at inverse temperature fi by 

a"(D], D~')= lim - - 1  log ZA(D;' D~b') (17) 
ATZ~ flSa(n) [ZA(D;)ZA(D;')] 1/2 

where SA(n) is the area of the portion 
inside A. 

of the plane orthogonal to n 

T h e o r e m  3. I f r ' ~ < r a n d a = A b  ( m o d p , ) , w e  have 

n r n r n r' a (Da, D~b)>~a (D~, D2) +a (D o, D;')+ " r' G (D~, D;) (18) 
" ~' ( 1 9 )  a"(D r, Drb ") >~ a"(Dra, D]') + a (D o, D~b ") Vr" 

Proof. Let us begin with (18), which in finite volume is equivalent to 

ZA(D~, D"b) 
ZA(D]) 1/2 ZA(Drb) ~/2 

r r' ZA(Da, D.) ZA(D2, Drb ') ZA(D~b ', Drb) 
<~ ZA(D~)I/2 ZA(D~')I/2 ~ A ~  (FIr'$l/2! ~At~b7 (FIr']l/2) ZA(D~)I/2 ZA(Drb)I/2 

o r  

ZA(D], D~b) r r' r' .< ZA(Dr~, Da) ZA(Db, D;) 
ZA(D r' , D~)'~ r, ZA(Da) ZA(Drb ') 

(20) 

This last inequality follows by a chain of inequalities: let (-)o,r;b,r' denote 
the expectation in the ensemble (D r, D~,'). We first use (11) to obtain (r'~< r 
is necessary here) 

t [I 6~,(~,,a) [I a~r(~,,b)) 
i e OA + i~ OA- a,r';b,r' 

~ l i ~ a ~ I A + ~ S P r ( ( ~ i ' a ) l a ,  r,;b,r, l i ~ g A _ ~ S P r ( ( ~ i ' b ) l a ,  r,;b,r , 
(21) 

We then use (12) to prove 

(22) 

and (13) to prove 

(23) 
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Combining (2l)-(23)  gives (20), which proves (18). One could be worried 
that we have omitted factors of the kind (p jq )  which were present in (16); 
it can be checked that they factor out in the above argument. We now turn 
to (19), which in finite volume is equivalent to 

Za(D~, Drb '') 
ZA(D;) 1/2 ZA(Drb") 1/2 

ZA(D r , Dr ' ) ZA(Dr ', Drb " ) 
ZA(D~) ~/2 ZA(Dr') ~/2 Z~(D~a') 1/2 Za(D;") 1/2 

or 

or  

r r ZA(D~, Db ) ZA(D.,  D;") <~ Zz(Da, D~') r r" 

ZA(D;') ZA(D~') ZA(Df,') (24) 

<~t~eA. aPr(a'a)>a,r .... '{iE~H~ 'Pr"((~i'b))a,r';a, r" (25) 

which is of the form (11) provided r'<~r. This concludes the proof of 
Theorem 3. | 

Theorem 3 can be used iteratively; e.g., we have the following result. 

Corollary. 

ff(a., b) > o-(a, D am -l) _1_ if(Dam 1, Da,,, 2)+ . . . +  a(D'a, D) + a(D, D~) 

+ ... +a(O~ -2, D;"-~)+a(O~ - ~, b) 

4. DISCUSSION 

We first consider the Hamiltonian (2) for m = 2: 

Z 
(Lj>cA 

= - ~ J., 6,,(a,, q )  + J2 6(ai, q )  (26) 
(i,j}cA 

and give a brief discussion about the phase diagram associated with this 
model. Let us consider the following restricted ensembles(4): 

1. The q ordered restricted ensembles which are the states supported 
by a single configuration where all the spins are identical, i.e., a i =  a for 
a = 1, 2,..., q. 
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2. The partially ordered ensembles where all a~sDt, with equi- 
distributed probability on these configurations. When a = 1 ..... , q there are 
q2 different partially ordered restricted ensembles. 

3. The disordered restricted ensemble denoted by D which gives 
equal probability to all configurations. 

Taking into account the energy and the entropy contributions associated 
with these sets of configurations, we see that the weights of the restricted 
ensembles are proportional to exp[fl(Jl+J2) l(A)] in case l, to 
exp[flJ 1 l(A)+ IAI In q2] in case 2, and to exp(lA[ In q) in case 3, where 
l(A) is the number of nearest neighor pairs inside A and I A] is the number 
of sites. At the point P = ((i /d) In ql, (l/d) In q2) in the plane [3J~, [1J2 the 
three weights are equal. There are three straight lines starting form P where 
two of the weights coincide. These lines divide the plane flJ1, [1J2 in three 
regions (1), (2), and (3), where one of the weights is dominant (see Fig. 1). 

Such restricted ensembles appear as the limit of the equilibrium states 
of the system when ql, q2, and /3 tend to infinity. Therefore, to each 
restricted ensemble a pure thermodynamic phase can be associated, and the 
phase diagram for large ql and q2 should mimic the above structure as 
shown in Fig. 2. A proof of it might be obtained either by using the 
generalization of the Pirogov-Sinai theory theory proposed in ref. 4 or by 
extending the method of ref. 6. 

A proof of the existence of these different pure phases, which gives a 
partial description of the phase diagram, can already be obtained by means 

(l/d) log q2 
P 

l~J2 

(l/d) log q 

(1) 

(2) 

(l/d) log ql ~J1 

Fig. 1. Diagram of restricted ensembles. 
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[~J2 

qlKt(q2 ) 

Kt(q) 

Kt(q2) 

q orderedphases (1) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ 
13 

..." 

...." 

: " / [~tl "/ 
: - / 

.: 
�9 " 2 
: / ~t - .: '~ : / " 

/ / / "  
/ / ,  ,. 
: :// """N 
/ one disorderedphase (3) 

. / . /"  

I i, 
\ ql partially disorderedphases (2) 

Kt(ql) ~3J 1 

Fig. 2. Expected phase diagram for Hamiltonian (26). 

of correlation inequalities. This proof is valid for any value of ql and q2 
provided the usual Ports models with these numbers of states have a first- 
order transition. We let a = a l + ( a 2 - 1 ) q i ,  aie {1,..., qi}, and denote by 
( ' ) ~  (J1, J2) the expectation value with respect to the measure (10) under 
the ordered boundary condition "a": 

( .)~A(Jl,J~)=Zs ~ exp[--flg(aAlaaA)] 1--I 6(ai, a) (27) 
~A;C~dA i E a A  

and denote by ( . ) a ( j1 ,  J2) the corresponding thermodynamic limit. We let 
K,(q) denote the value of the coupling constant at the transition point for 
the q-state, d-dimensional Potts model and introduce the order parameters 

rnl = (q~ 5(x] ,  al) - 1) )"(J , ,  Jz) (28) 

m: = (q2 ~(x/2, a2) -- 1 )"(J1, J2) (29) 
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Theorem 4. Under the above hypothesis we have: 

1. If fiJ~+flJ2/q2>~K,(q~) and ~J2/q~>~Kt(q2), then m r > 0  and 
m 2 > 0 .  

2. 

3. 

If flJ1 + fiJ2/q2 >t Kt(ql) and f J2 < Kt(q2), then rn 1 > 0 and m 2 =0 .  

If flJ1 + fiJ2 < Kt(ql) and flJ2 < K,(q2), then rn~ = 0 and rn 2 = 0. 

ProoL We adapt to our case the method of ref. 14. We here use the 
fact that q~ 6(x~, x ~ ) - 1  can be written as a sum of cosines and apply 
Ginibre inequalities. (9) Then 

0~< (q2 6( x2, a 2 ) -  1 )~(J1 ,  J2) 

~< (q2 6( x2, a2) - 1 )~ (J~ = c~, J2) = mA,qz(J2) 

where MA, q(J ) denotes the magnetization of the q-state Potts model, i.e., 

m A,q(J ) = (q~5(x), al) 3(x 2, a 2 ) -  1 )A(0, J)  

We add to the Hamiltonian the term 2 ~<i,j> 6(x~, x2). The expectation of 
q2 3( x2, a 2 ) -  1 for )~ = 0 is less than the same expectation for 2 = 0% and 
therefore 

0 <~ (ql b(x), a,) - 1 >~ (J,, J2) ~< mA,q2(J1 + J2) 

Finally we notice that each term of the sum in the Hamiltonian can be 
written as 

J2 
q2 ql q 

and we get 

(ql(~(x~,al)-  |))aA(JI,J2)~MA, qI(Jl-l-J-~22) 

( q2 (~(x~, a2)-  l )"A (Ji, J2) >~ M 4,qz (J-~l) 

The proof  of the theorem then follows from the fact that Mq(J)> 0 if 
flJ>~K,(q) and zero otherwise. | 

The regions where Theorem 4 applies are shown in Fig. 2 (see dashed 
lines), which has been drawn in the case ql >~q2. The case ql <q2 is 
analogous. 
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Immediate consequences of Theorem 3 are inequalities (4)-(6) stated 
in the Introduction as well as 

~r(a, b~)>~r(a, al)-k o'(al, bl) 

o-(a, D) >~ or(a, as) + a(al ,  D) (30) 

o'(al ,  b I ) ) o ' (al ,  D) + a(D, hi) 

where al,  b~, and D coincide, respectively, with D~al' Dbll , and D o (for any 
b). Taking into account the expected phase diagram of Fig. 2, we see that 
three different behaviors of our system are possible when the temperature 
varies. They correspond to the three cases described in the Introduction 
and occur, as shown in Fig. 2 (lines ll, 12,/3), according to wether J2/Jl is 
larger than, less than, or equal to its value at the triple point 7". Inequalities 
(4)-(6) and (30) then lead to the following conclusions: In the first case at 
the transition inverse temperature fl,, where the ordered and the disordered 
phases coexist, two different ordered phases a, b are wetted by a layer of 
the disordered phase D. Similarly, in the second case at /~, where the 
partially ordered and the disordered phases coexist, a layer of the 
disordered.phase D wets two partially ordered phases as, b~. On the 
other hand, at /~, where the ordered and the partially ordered phases 
coexist, the interface alb is wetted by the two layers of phases a~ and bl. 
Also the interface, ajbl is wetted by a layer of phase aa. In the third case, 
at the transition point where all different phases coexist, it appears that the 
interface a lb is wetted by the three layers of phases al,  D, and b~, etc. 

We finally consider the general Hamiltonian (2). In this case we 
expect, together with the q ordered and one disordered phase, r n -  1 kinds 
of partially ordered phases. They are associated with the partially ordered 
restricted ensembles of type r, for r = 1,..., m - 1, which have their support 
on the set of configurations such that cr e D r for all i. When a = 1,..., q this 
leads to Pr different states of type r. According to the values of the inter- 
actions Jr several first-order transitions may occur. At these transition 
points, the inequalities of Theorem 3 and their consequences suggest multi- 
layer wetting phenomena, the wetting layers of the coexisting phases being 
placed according to the partial order between pure phases defined by their 
type r. 
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